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 Bristol's long HPC history 
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 What does my group do? 
•  Performance portability 

•  Programming model evaluations 
•  Code design strategies 
•  Hardware evaluations 
•  "Cross-X", where X = vendor, language, … 

•  Fault tolerance 
•  Application-based fault tolerance 
•  Reliable computing on unreliable hardrware 
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 PERFORMANCE 
PORTABILITY 
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 BUDE – MOLECULAR 
DOCKING (2013) 
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 What is BUDE? 
•  Bristol University Docking Engine 

•  Dr Richard Sessions, PI (Biochemistry) 
•  Designed for true in silico virtual drug screening by 

docking 
•  Employs a genetic algorithm-based search of the 

six degrees of freedom in the arrangement of the 
protein and drug molecules to reduce the search 
space 

•  Uses a tuned empirical free-energy forcefield for 
predicting the binding pose and energy of the 
ligand with the target protein 
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 BUDE protein-ligand docking 
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 What did we do? 
•  Started with OpenCL 

•  Supported by all the major vendors (even Nvidia!) 
•  Wasn't anything else that let us try cross-vendor, 

cross-hardware at the time 
•  Ninja level programming 

•  Optimised initially for the most parallel device 
we had  

•  Kept checking that the optimisations weren't 
making things worse on the other devices 
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 More specifically… 
•  Ported all the code to the accelerator 
•  Helped the compiler turn all the conditional 

branches into straight-line, predicated 
code 
•  Involved eyeballing the generated PTX 

•  Did all the usual things to optimise 
memory accesses 
•  Alignment, padding, coalescence etc. 

•  Chose sensible problem/work-group sizes 

12 



 Optimising conditional branches 
Conditional execution 
// Only evaluate expression 
// if condition is met 
if (a > b) 
{ 
  acc += (a - b*c); 
} 
 

Corresponding PTX 
 
setp.gt.f32 %pred, %a, %b                                   
@!%pred bra $endif 
mul.f32 %f0, %b, %c                                         
sub.f32 %f1, %a, %f0                                        
add.f32 %acc, %acc, %f1  
$endif: 

Selection and masking 
// Always evaluate expression 
// and mask result 
temp = (a - b*c); 
mask = (a > b ? 1.f : 0.f); 
acc += (mask * temp); 
 
 

Corresponding PTX 
 
mul.f32 %f0, %b, %c                                         
sub.f32 %temp, %a, %f0                                      
setp.gt.f32 %pred, %a, %b                                   
selp.f32 %mask, %one, %zero, %pred                          
mad.f32 %acc, %mask, %temp, %acc  
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 Instruction mix 
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 Target hardware 
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 BUDE results 
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"High Performance in silico Virtual Drug Screening on Many-Core Processors", 
S. McIntosh-Smith, J. Price, R.B. Sessions, A.A. Ibarra, IJHPCA 2014 
DOI: 10.1177/1094342014528252  



 How much the optimisations helped 
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"High Performance in silico Virtual Drug Screening on Many-Core Processors", 
S. McIntosh-Smith, J. Price, R.B. Sessions, A.A. Ibarra, IJHPCA 2014 
DOI: 10.1177/1094342014528252  



 Performance portability 

•  BUDE was highly performance portable 
•  Compute intensive, N-body / Monte Carlo 

•  Bandwidth intensive codes next 
•  Structured grid codes: 

•  CloverLeaf (hydrodynamics) 
•  ROTORSIM (CFD) 
•  Lattice Boltzmann 
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 STRUCTURED GRID CODES 
(2013) 
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CloverLeaf: A Lagrangian- Eulerian 
hydrodynamics benchmark 
•  A collaboration between AWE, Warwick & Bristol 
•  CloverLeaf is a bandwidth-limited, structured grid 

code and part of Sandia's "Mantevo" benchmarks 
•  Solves the compressible Euler equations, which  

describe the conservation of energy, mass and 
momentum in a system 

•  These equations are solved on a Cartesian grid in 
2D with second-order accuracy, using an explicit 
finite-volume method 

•  Optimised parallel versions exist in OpenMP, MPI, 
OpenCL, OpenACC, CUDA and Co-Array Fortran 
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CloverLeaf benchmark parameters 

•  Double precision grid of size 1920×3840 
•  �7.4m grid points, 25 values per grid point  
à�1.5 Gbytes in working dataset 

•  The OpenCL and CUDA parallelisations 
were performed in an identical manner 
•  One work-item/thread for each grid point 
•  Identical arrangements for work-group sizes 

and layouts 
•  E.g. 2D work-groups of (128, 1) for OpenCL 
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 Results – performance 
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S.N. McIntosh-Smith, M. Boulton, D. Curran, & J.R. Price, “On the 
performance portability of structured grid codes on many-core computer 
architectures”, ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4 
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1.9X 



 Results – sustained bandwidth 
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S.N. McIntosh-Smith, M. Boulton, D. Curran, & J.R. Price, “On the 
performance portability of structured grid codes on many-core computer 
architectures”, ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4 

48% 

54% 



24 

Performance portability isn't what we expect 

But why not? 



 Why don't we expect perf. portability? 

•  Historical reasons 
•  Started with immature drivers 
•  Started with immature architectures 
•  Started with immature applications 

•  But things have changed 
•  Drivers now mature / maturing 
•  Architectures now mature / maturing 
•  Applications now mature / maturing 
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 (Ninja level) performance portability 
techniques 

•  Use a platform portable parallel language 

•  Aim for 80-90% of optimal 

•  Avoid platform-specific optimisations 

•  Most optimisations make the code faster 
on most platforms 
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 HIGHER-LEVEL 
PERFORMANCE 
PORTABILITY (2014-) 
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 Moving on up 
•  Low-level programming in OpenCL or 

CUDA is all very well … 
•  ... But we don't expect most scientific 

codes to be re-written in these languages 

•  What are the emerging options? 
•  Directive-based: OpenMP 4.x, OpenACC, 

OmpSs, ... 
•  C++ based: RAJA, Kokkos, SYCL, ... 
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DOE performance portability workshop, Arizona, April 2016. 



TeaLeaf – Heat Conduction 
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•  Implicit,	sparse,	matrix-free	solvers	
on	structured	grid	
•  Conjugate	Gradient	(CG)	
•  Chebyshev	
•  PrecondiAoned	Polynomial	CG	(PPCG)	

• Memory	bandwidth	bound	
• Good	strong	and	weak	scaling	on	
Titan	&	Piz	Daint	

•  Mini-app from Mantevo 
suite of benchmarks 



 The Performance Experiment 
•  Performance	tested	on	CPU,	GPU,	and	KNC	

•  Single	node	only	(mulA-node	scaling	proven)	

•  All	ports	were	opAmised	as	much	as	possible,	
while	ensuring	performance	portability	

•  Solved	4096x4096	problem,	the	point	of	
mesh	convergence,	for	single	itera0on	
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TeaLeaf - CPU 
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At most 12% runtime penalty for modern Intel CPU 
 



TeaLeaf – Power8 
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Performance bug often seen with CG solver 
 
Results generally good, particularly for optimised versions 



TeaLeaf – GPU 
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Performance bug with CG again present in some cases 
 
All models get to within 25% of OpenCL / CUDA 



TeaLeaf lines of code 
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TeaLeaf conclusions 
•  RAJA and Kokkos both looking promising 

•  For GPU (NVIDIA) and CPU (Intel, IBM) 
•  What about other architectures though? 

•  AMD GPUs, ARM CPUs, … 
•  Big question is: who maintains these in the 

long-term? 

•  OpenMP 4.x also looking good for GPUs 
•  Still lots of Fortran out there 
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 HARDER APPLICATIONS: 
TRANSPORT (2014-) 
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 Transport: SNAP mini-app 
•  Neutral particle transport code from LANL 
•  Performance proxy for production code PARTISN 
•  Discretization 

•  Finite difference in time 
•  Finite difference in space 
•  Multi-group in energy 
•  Discrete ordinates in angle 

•  Solution 
•  Matrix free, structured grid 
•  Simple iterations on scattering source (RHS of equation) 
•  Jacobi iterations in energy 

•  Generates a sweep across the spatial mesh 
•  Can’t compute in all cells all at once like your other favourite 

PDEs! 
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 Making SNAP fast 
•  Weren't any really fast GPU ports of SNAP 
•  The wavefront dependencies make it hard 

to parallelise 
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 A Many-core Implementation 

40 © Simon McIntosh-Smith 

•  Need to solve for each 
cell, for each angle and 
for each energy group 

•  We exposed all the 
different levels of 
parallelism in one node: 
•  Cells in the wavefront/

hyperplane 
•  Angles in the octant 
•  Energy groups 

•  This is the first time GPUs 
outperformed CPUs for 
deterministic transport 

Expressing Parallelism on Many-Core for Deterministic Discrete Ordinates Transport.  
Deakin, T., McIntosh-Smith, S., & Gaudin, W. (2015).  
International Workshop on Representative Applications (WRAp), IEEE Cluster, Chicago, USA. 



 New SNAP results 

41 
Expressing Parallelism on Many-Core for Deterministic Discrete Ordinates Transport.  
Deakin, T., McIntosh-Smith, S., & Gaudin, W. (2015).  
International Workshop on Representative Applications (WRAp), IEEE Cluster, Chicago, USA. 
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 Performance portability too 

Expressing Parallelism on Many-Core for Deterministic Discrete Ordinates Transport.  
Deakin, T., McIntosh-Smith, S., & Gaudin, W. (2015).  
International Workshop on Representative Applications (WRAp), IEEE Cluster, Chicago, USA. 
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•  4X speedup using the GPUs 
•  Models line up well with experimental results: within 20% 
•  Titan network struggling: 84% time in communication at 8192 MPI ranks 

Original SNAP on CPUs 

Original Model 

Our SNAP on GPUs 
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•  2X speedup using the GPUs - CPUs much faster than in Titan 
•  Models line up well with experimental results: within 12% 
•  Better network helps transport: less time in comms than Titan’s Gemini torus 



 Performance portability summary 
•  It is possible to achieve performance 

portability for hydrodynamics, diffusion and 
transport 
•  At least for current CPUs and GPUs 
•  Harder for the next generation though 

•  Memory hierarchy, degree of parallelism per node, … 

•  Performance portability should be getting 
easier to achieve with higher-level 
abstractions 
•  RAJA, Kokkos all looking promising 
•  OpenMP 4.x also delivering good results 
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 Performance portability refs 
•  On the performance portability of structured grid codes on 

many-core computer architectures 
S.N. McIntosh-Smith, M. Boulton, D. Curran, & J.R. Price 
ISC, Leipzig, June 2014. DOI: 10.1007/978-3-319-07518-1_4 

•  Assessing the Performance Portability of Modern Parallel 
Programming Models using TeaLeaf 
Martineau, M., McIntosh-Smith, S. & Gaudin, W.  
Concurrency and Computation: Practice and Experience (April 
2016), to appear 

•  Expressing Parallelism on Many-Core for Deterministic Discrete 
Ordinates Transport 
Deakin, T., McIntosh-Smith, S., & Gaudin, W. 
International Workshop on Representative Applications (WRAp), 
IEEE Cluster, Chicago, United States. Sep 2015. 
DOI: 10.1109/CLUSTER.2015.127 

•  https://github.com/UoB-HPC/ 
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 FAULT TOLERANCE 
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 Top 10 Exascale challenges 
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Top ten exascale challenges
1. Energy efficiency: Creating more energy-efficient circuit, power, and 

cooling technologies.
2. Interconnect technology: Increasing the performance and energy 

efficiency of data movement.
3. Memory technology: Integrating advanced memory technologies to 

improve both capacity and bandwidth.
4. Scalable system software: Developing scalable system software that is 

power- and resilience-aware.
5. Programming systems: Inventing new programming environments that 

express massive parallelism, data locality, and resilience
6. Data management: Creating data management software that can handle 

the volume, velocity and diversity of data that is anticipated.
7. Exascale algorithms: Reformulating science problems and redesigning, 

or reinventing, their solution algorithms for exascale systems.
8. Algorithms for discovery, design, and decision: Facilitating 

mathematical optimization and uncertainty quantification for exascale 
discovery, design, and decision making.

9. Resilience and correctness: Ensuring correct scientific computation in 
face of faults, reproducibility, and algorithm verification challenges.

10. Scientific productivity: Increasing the productivity of computational 
scientists with new software engineering tools and environment
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 FP7 Mont Blanc project 

Build a supercomputer from mobile 
processor technology – is it more energy 
efficient? 
•  Project running since Oct 2011 
•  €16m total EU funding for 6 years 
•  14 project partners 
•  Several prototype machines so far 
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http://www.montblanc-project.eu/ 



50 Project review - P17 Barcelona, 6th November 2014

Mont-Blanc2 consortium



 Mont Blanc compute card 
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No ECC! 



 Fault tolerance & resilience 
•  All handled by the hardware, right? 
•  No free lunch anywhere anymore… 
•  Consider "simple" ECC on external DRAM 

•  Single Error Correct Double Error Detect 
•  Uses an extra 8 parity bits per 64 data bits 
•  12.5% more memory, bandwidth, power, … 
•  Expensive, slow mechanism when an 

uncorrectable error occurs 
•  Invoke OS, checkpoint/restart sequence, … 
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 Checkpoint/restart 
•  But if ECC doesn't catch the error, 

checkpoint/restart solves the problem, 
right? 
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 Application-Based 
Fault Tolerance (ABFT) 

Lots of good progress being made in: 
•  Sparse linear algebra (this work) 
•  Dense linear algebra 
•  Monte Carlo 
•  Structured / Unstructured grids 
•  N-body 
•  Spectral (FFT) 
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 Sparse matrix compressed formats 

•  Sparse matrices are typically mostly 0 
•  E.g. in the University of Florida sparse 

matrix collection (~2,600 real, floating 
point examples), the median fill of non-
zeros is just �0.24% 

•  Therefore stored in a compressed format, 
such as COOrdinate format (COO) and 
Compressed Sparse Row (CSR) 

55 
The University of Florida Sparse Matrix Collection, T. A. Davis and Y. Hu, 
ACM Transactions on Mathematical Software, Vol 38, Issue 1, 2011. 



 COO sparse matrix format 

•  Conceptually think of each sparse matrix 
element as a 128-bit structure: 
•  Two 32-bit unsigned coordinates (x,y) 

•  One 64-bit floating point data value 
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x-coord y-coord 64-bit value 

0 31 32 63 64 127 



 Software ECC protection for 
sparse matrix elements 

•  Remember that most sparse matrices don't 
use all their index bits 

•  Observation: This leave index bits that could 
be "repurposed" for a software ECC scheme 

•  A software ECC scheme might save 
considerable energy, performance and 
memory (all in the region of 10-20%) 
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 COO sparse matrix format 

•  Using 8 bits of the 128-bit compound element would 
allow a full single error correct, double error detect 
(SECDED) scheme in software 

•  Use e.g. 4 unused bits from the top of each index 
•  Limits their size to "just" 0..227 (0..134M) 
•  With 64-bit indices, even more spare bits we can use 

•  Requires no more bandwidth, just more compute 
•  Actually saves the 12.5% ECC bandwidth… 
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x-coord y-coord 64-bit value 

0 31 32 63 64 127 



 Software-based ECC Results 

Scheme Bits needed x86 overhead ARM32 overhead ARM64 overhead 
Constraints 0 1.00x 1.07x 1.03x 
SED 1 1.01x 1.28x 1.10x 
SEC 7-bit 7 2.61x 4.27x 2.25x 
SEC 8-bit 8 1.04x 1.48x 1.13x 
SECDED 8 2.49x 4.79x 2.33x 

This is looking very promising! 

•  Next, implement on a GPU 
•  Compare with/without ECC hardware 

enabled 



 Fault tolerance conclusions 
•  Fault tolerance / resilience is set to 

become a first-order concern for 
Exascale scientific software 

•  Application-based fault tolerance (ABFT) 
is one promising technique to address this 
issue 

•  ABFT can be applied at the library-level 
to help protect large-scale sparse matrix 
operations 

60 Twitter: @simonmcs     http://uob-hpc.github.io 
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Exploiting Spatial Information in Datasets 
To Enable Fault Tolerant Sparse Matrix 
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A parting thought 



 Long-term	fundamental	trends	

Time 
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Microprocessor performance 
~55% per annum 

Memory capacity 
~49% per annum 

(and slowing down?) 

Memory bandwidth 
~30% per annum 

(and slowing down?) 

Memory latency 
<<30% per annum 

We design 
codes for here 

We need to 
design codes 

for here! 



 For related software and papers 
See: http://uob-hpc.github.io 

GPU-STREAM: 
  https://github.com/UoB-HPC/GPU-STREAM 
CloverLeaf: 
  https://github.com/UoB-HPC/CloverLeaf-OpenMP4  
TeaLeaf: 
  https://github.com/UoB-HPC/TeaLeaf-OpenSrc  
SNAP: 
  https://github.com/UoB-HPC/SNAP_MPI_OpenCL 
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